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Mapping Class Groups of
3-Manifolds, Then and Now

Sungbok Hong and Darryl McCullough

ABSTRACT. Six of a set of seven conjectures about 3-manifold mapping class
groups proposed in the 1990’s by the second author are proven for orientable
3-manifolds using the Geometrization Theorem and other subsequent results
about 3-manifolds. We prove the seventh conjecture for some cases, and also
develop some results that refine one of the proven ones.

Introduction

The mapping class group of a manifold M is the group H (M) of isotopy classes
of homeomorphisms (we do not require that the homeomorphisms be orientation-
preserving). In the 1990’s, the second author proposed a set of conjectures concern-
ing mapping class groups of 3-manifolds, that were included as Problem 3.49 of the
Kirby problem list [17]. In the intervening years, some remarkable advances have
been made in low-dimensional topology, culminating in the proof of Thurston’s Ge-
ometrization Conjecture by Perelman. We will see that at least in the orientable
case most of the conjectures follow from these newer results. The nonorientable
versions remain unresolved, although it seems likely that the conjectures hold for
them as well.

Problem 3.49 will be reproduced in its entirety in Section 1, where we will see
that it consists of seven conjectures called A through G. Section 2 gives additional
comments and examples delineating them. In Section 4, we will see that the first six
of the conjectures have now been established (Conjecture B requires an additional
hypothesis to eliminate simple counterexamples when the manifold has 2-sphere
boundary components). Conjecture G is a longer story, given in Section 5: it is
established in many cases, but remains open in general. Finally, in Section 6, we
prove some results that extend Conjecture B.

The remaining section of the paper, Section 3, proves the Finite Mapping Class
Group Theorem, basically the result that the mapping class groups of closed ori-
entable irreducible non-Haken 3-manifolds are finite. It is a key ingredient in the
proofs of several of the conjectures and subsequent results. As we will see, it follows
rather easily using the Geometrization Theorem and a major result of D. Gabai, R.
Meyerhoff, and N. Thurston [10] from the early 2000’s, together with earlier work
of P. Scott, M. Boileau, and J.-P. Otal.
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The authors are grateful to the referee for suggesting the inclusion of additional
examples illustrating some of the conjectures. This prompted us to add Section 2
to the revision of the manuscript.

In the remainder of this article, all 3-manifolds will be assumed to be orientable.

1. The conjectures
Here are the conjectures as given in [17]:

Problem 3.49 (McCullough) Generalizing the construction of Dehn twist homeo-
morphisms of 2-manifolds, define a Dehn homeomorphism as follows: Let (F™"~1 x
I,OF™ ! x I) ¢ (M"™,0M"), where F is a connected codimension-1 submani-
fold and ' x I N OM = OF x I. Let ¢; be an element of m(Homeo(F),1p),
ie. for 0 <t <1, ¢ is a continuous family of homeomorphisms of F' such that
wo = ¢1 = 1p. Define h € mo(Homeo(M)) = H(M) by

(o), t) if (z,t) € F < I,
h(x’t)_{h(m)—m ifm¢F xI.

Note that when 71 (Homeo(F')) is trivial, a Dehn homeomorphism must be isotopic
to the identity. Define the Dehn subgroup D(M) of H(M) to be the subgroup
generated by Dehn homeomorphisms.

The following table lists m (Homeo(F')) for connected 2-manifolds, and the
names of the corresponding Dehn homeomorphisms of 3-manifolds.

F m1(Homeo(F')) Dehn homeomorphism
St x St YA/ Dehn twist about a torus
St x 1T Z Dehn twist about an annulus
D? Z twist
52 Z/27 rotation about a sphere
RP? Z7)27 rotation about a projective plane
Klein bottle 7 Dehn twist about a Klein bottle
Moébius band 7 Dehn twist about a Mobius band
X(F) <0 {0}

(A) Dehn Subgroup Conjecture: Let M be a compact 3-manifold. Then
D(M) has finite index in H(M).

Remarks: For M orientable, (A) is true if it is true for irreducible
manifolds [23]. Johannson [20, Corollary 27.6] proved (A) for boundary-
irreducible Haken manifolds, and this was extended to all Haken manifolds
in [27].
Denote by D~ (M) the subgroup of D(M) generated by Dehn homeomorphisms
using D?, $2, and RP? (the surfaces of positive Euler characteristic).
By an argument similar to the proof of Proposition 1.2 of [24], one can prove
that if 9M is incompressible, then Ds (M) is a finite abelian group.
When the boundary of M is compressible, the following results were proved in
[22]:
e If OM is almost incompressible, then Dso(M) is a finitely generated
abelian group (almost incompressible means that in each boundary com-
ponent F' of M, there is at most one simple closed curve up to isotopy
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that bounds a disk in M but does not bound a disk or Mobius band in
F);

If OM is not almost incompressible, then D~ (M) is infinitely generated
and nonabelian.

Kernel Conjecture: D~o(M) has finite index in the kernel of H(M) —
Out(m1(M)).

Remarks: In general, D~o(M) need not equal the kernel, as shown by
the example of reflection in the fibers of an I-bundle. For orientable
M containing no fake 3-cells, (B) is true if it is true for irreducible M
[24]. The main case in which (B) is unknown is when M is irreducible,
aspherical and not sufficiently large, although even here some cases are
known by work of D. Gabai [8,9].

Define Outgps(m1(M)) to be the subgroup of Out(m(M)) consisting of the
automorphisms ¢ such that for every boundary component F' of M, there exists a
boundary component G so that ¢ (ix(m(F'))) is conjugate in w1 (M) to jx(m(G)),

where i:

F — M and j: G — M are the inclusions. This subgroup contains the

image of H(M) — Out(m(M)).

(©)

Image Conjecture: The homomorphism H(M) — Outgp (m1(M)) has
image of finite index.

Remarks: In general, the image is not all of Outgps(m1(M)) (see the
discussion in the next section). Again, (C) is true if it is true for irreducible
manifolds [24].

(B) and (C) combine to give the following conjecture, where almost ezact means
that images have finite indexes in kernels (rather than equaling kernels as in exact-

ness).

(D)

Almost Exactness Conjecture: Let M be a compact 3-manifold. Then
the sequence

1= Dso(M) = H(M) — Outgp(m(M)) — 1

1s almost exact.

Finiteness Conjecture: Let M be closed, irreducible, but not sufficiently
large. Then H(M) is finite.

Remarks: Note that (E) follows from the Dehn Subgroup Conjecture
(A). (E) has been proven by Gabai for many aspherical but not sufficiently
large manifolds [8,9]. Also, H(M) should be finite when M = S3/G for
G € SO(4) for then it is conjectured that H(M) = mo(Isom(M)) (Problem
3.47).

Finite Presentation Conjecture: H(M) is finitely presented.
Remarks: For orientable M, (F) is true if it is true for irreducible man-
ifolds [16], and is known in many cases, for example lens spaces [4] and
Haken manifolds [11,33].

Recall that a group is said to have a property virtually if some finite-index
subgroup has the property.
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(G) Virtual Geometric Finiteness Conjecture: Let M be a compact 3-
manifold. Then
(1) H(M) is virtually torsion-free.
(il) H(M) is virtually of finite cohomological dimension.
(iil) H(M) is virtually geometrically finite (a group is geometrically finite

if it is the fundamental group of a finite aspherical complex).

Remarks: Since (iii) implies (ii) and (ii) implies (i), this is really a se-
quence of three successively stronger conjectures. All hold for compact
2-manifolds by work of J. Harer [12,13] and W. Harvey [14,15], and for
Haken manifolds [25], and hold trivially in the cases where the mapping
class group is known to be finite. For non-irreducible 3-manifolds, the
following is a preliminary question. Define the rotation subgroup R(M)
to be the subgroup generated by rotations about 2-spheres and 2-sided
projective planes in M; it is a finite normal abelian subgroup of H(M).
Is there a finite-index subgroup of H(M) that intersects R(M) trivially?
If not, replace H(M) by H(M)/R(M) in the conjecture.

2. Additional remarks and examples for the Conjectures

The Dehn subgroup D(M) is contained in the subgroup H, (M) consisting of
the orientation-preserving elements of H(M). Since Dehn homeomorphisms pre-
serve each boundary component, D(M) lies in the subgroup of H (M) that acts
trivially on the set of boundary components, but even in this subgroup, it may
have large index. For example, D(M) is trivial for any compact 3-manifold whose
interior admits a complete hyperbolic metric of finite volume, yet by a result of
S. Kojima [18], every finite group occurs as the full isometry group (and hence
as H(M), by results detailed in the next section) for some closed hyperbolic 3-
manifold.

The image of H(M) — Out(w(M)) is typically a subgroup of infinite index.
Examples abound when M has a nonseparating compressing disk and is not a
compression body. For then, one may take a 1-handle C' and map it around a non-
peripheral loop £ in M — C, then over C'. The homotopy inverse takes C' around the
reverse of £ and over C in the same direction. Apart from a few exceptional “small”
cases, fully analyzed in Main Topological Theorem 1 of [6], the automorphisms in-
duced by the powers of such a homotopy equivalence and all its powers represent
distinct cosets of the image of H(M) in Out(m;(M)). Main Topological Theorem 2
of the same work analyzes the rather complicated case of incompressible boundary;
roughly speaking, the index is infinite unless all components of the characteristic
submanifold that meet the boundary are of certain “small” types.

Conjecture (C) can be interpreted as saying that all the phenomena that allow
the image of H(M) — Out(n1(M)) to have infinite index involve the boundary.
Even in the closed case, however, the image need not be all of Outgps(m1(M)). One
type of example is any connected sum L(m, q1)# L(m, g2) for which the summands
are not homeomorphic. The fundamental group is the free product Z /m *x Z /m,
but no outer automorphism that interchanges the summands can be induced by
a homeomorphism. In the irreducible case, a lens space L(m,q) may admit many
outer automorphisms of the fundamental group— multiplications by any nontriv-
ial element which has a multiplicative inverse modulo m— but as proven by F.
Bonahon [4], its mapping class group never has order larger than 4. More subtle
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examples with finite fundamental group were obtained by S. Plotnick [29]. For
example if ¥ is the Poincaré sphere, then the unique nontrivial outer automor-
phism of Out(71(X)) is not induced by any homeomorphism. On the other hand,
H(M) — Outgpr(m(M)) is surjective for aspherical 3-manifolds. This holds by
Waldhausen’s celebrated work [32] in the Haken case, by Mostow Rigidity in the
hyperbolic case, and follows from results in the literature for the non-Haken non-
hyperbolic cases (see [28, Proposition 7.1]).

3. The Finite Mapping Class Group Theorem

Most of the Conjectures are resolved, at least for the orientable case, by Perel-
man’s completion of the proof of the Geometrization Theorem and other funda-
mental work. The main step is the following:

THEOREM (Finite Mapping Class Group Theorem). Let M be a closed ori-
entable irreducible non-Haken 3-manifold. Then H(M) and Out(m(M)) are finite,
and if M is not S or RP®, then H(M) — Out(m(M)) is injective.

PrROOF. When 71 (M) and hence Out(wy(M)) are finite, the Geometrization
Theorem implies that M is the quotient of S by a finite group of isometries. For
these manifolds, as detailed in the proof of Theorem 3.1 in [26], the work of many
authors shows that apart from S and RP?, H (M) — Out(r,(M)) is injective.

When 71 (M) is infinite, we appeal to the Geometrization Theorem again to
deduce that every non-Haken irreducible orientable 3-manifold with infinite funda-
mental group is either a Seifert-fibered space or a hyperbolic manifold.

Gabai, Meyerhoff, and N. Thurston [10] proved that H(M) — Out(m(M))
is an isomorphism for closed hyperbolic 3-manifolds. For any closed hyperbolic
n-manifold with n > 3, Out(m1(M)) is finite by Mostow Rigidity (see R. Benedetti
and C. Petronio [1, Theorem C.5.6]).

The non-Haken Seifert manifolds with infinite fundamental group fiber over
S? with exactly three exceptional fibers, and for all such manifolds, Out(7(M))
is finite [25, p. 21]. Scott [30] and Boileau and Otal [2, 3] showed that H(M) —
Out (w1 (M)) is injective in all such cases (see also T. Soma [31, Theorem 0.2]). O

4. Conjectures A through F

Recall that we are assuming throughout that M is orientable.

As explained in the remarks to Conjecture A, the conjecture is known to follow
from the non-Haken irreducible case, which is immediate from the Finite Mapping
Class Group Theorem.

In Conjecture B, the assumption that M has no 2-sphere boundary components
should be added to the statement, since otherwise “slide homeomorphisms” (defined
below) that move a D3-summand around an arc in M can occur. In fact, with this
assumption, Do(M) is the full kernel of H (M) — Out(m(M)), where as before,
H (M) is the orientation-preserving subgroup of H(M):

THEOREM 4.1. If M has no 2-sphere boundary components, then Dsqo(M)
equals the kernel of Hi (M) — Out(m (M)).

PROOF. We first recall the definition of slide homeomorphisms. Suppose that
M is a connected sum M # M, = M, — D3 Us, My — D3, where X is a 2-sphere. We
write M/ for M; — D3. Let « be an arc in M3 meeting 3 exactly in its endpoints.
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A slide of My around « is defined as follows. Let N be the manifold from M}
obtained by filling the boundary component ¥ of M} with a 3-ball E. Let W be a
regular neighborhood of E U «, a solid torus in N. Choose an isotopy J; of N such
that:

(1) JO = 11\/' and J1|E = 1E~
(2) Jy(x)=axfor 0<t<1and xz¢ W.
(3) During the isotopy Jy, E travels once around the loop a.

Now define h: M — M by

T x € Mj
h(z) = ,
Ji(z) x € Mj

We remark that h is isotopic to a Dehn twist about the torus OW in M, provided
that one chooses J so as not to introduce an additional rotation about X.

To prove the theorem, we recall that Theorem 1.5 of [24] gives the following
set of generators for the kernel of H (M) — Out(m(M)):

(1) interchanges of D3-summands,

(2) slides of D3-summands,

(3) interchanges of fake 3-cell summands,

(4) slides of fake 3-cell summands, and

(5) Dehn twists about 2-spheres,

(6) homeomorphisms supported on one irreducible summand N which induce
the identity automorphism on 71 (N).

The assumption that M has no 2-sphere boundary components eliminates gener-
ators of types (1) and (2), and the Geometrization Theorem eliminates types (3)
and (4). Type (5) are in D+¢(M), so we consider those of type (6) on an irreducible
orientable summand N. It is sufficient to consider only orientation-preserving ele-
ments of the kernel (orientation-reversing elements can exist, specifically reflection
in the fibers of I-bundles, and reflections of 3 and RP?).

If N is Haken, then Theorem 6.2.1 of [27] shows that Dehn twists about disks
generate the kernel, and these lie in D~ (M).

Suppose that N is non-Haken. The Finite Mapping Class Group Theorem
shows that there are no nontrivial elements of type (6), unless N is S® or RP*. But
in these two cases, the nontrivial elements inducing the identity automorphism are
orientation-reversing, so do not produce elements of H (M). a

For Conjectures C and F, as in the original Remarks, it is sufficient to consider
irreducible M, in which case they hold by Waldhausen’s results [32] in the Haken
case and by the Finite Mapping Class Group Theorem in the non-Haken case.

Conjecture D is immediate from Conjectures B and C, and Conjecture E is
part of the Finite Mapping Class Group Theorem.

5. Conjecture G

As noted in the remarks, Conjecture G holds for Haken 3-manifolds. The Finite
Mapping Class Group Theorem shows that it holds for the non-Haken and hence
for all irreducible cases.
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The question of whether H(M) has a finite-index subgroup that meets R(M)
trivially is still open, but we can now prove the weaker form of Conjecture G(ii) in
the closed case:

THEOREM 5.1. Let M be a closed orientable 3-manifold. Then H(M)/ R(M)
has finite virtual cohomological dimension.

ProOOF. It suffices to prove the theorem for H4(M)/R(M). Theorem 4.1
shows that H (M)/R(M) — Out(m(M)) is injective. By Conjecture C, it has
image of finite index. Consequently, to prove the theorem, it suffices to prove that
Out(m1(M)) has finite virtual cohomological dimension. To achieve this, we will
apply the following theorem of V. Guirardel and G. Levitt [19, Corollary 5.3]:

THEOREM. Let G be a free product Gi*- - -xGpxFy,, with each G; indecomposable
and with Fy, free.

(1) If each G; has a subgroup H; of finite index with H; and H;/Z(H;) torsion-
free, and Out(H;) virtually torsion-free, then Out(QG) is virtually torsion-
free.

(2) If furthermore H; and Out(H;) have finite virtual cohomological dimen-
sion, then Out(G) has finite virtual cohomological dimension.

In our case, G = w1 (M) = 71 (My) * - - x w1 (M,,), where each M; is a prime
summand of M, and we take each G; = m1(M;). To complete the proof, we must
verify the hypotheses of the Guirardel-Levitt theorem.

If 71 (M;) is finite, then we may take H; trivial, and if it is infinite cyclic, we
take H; = m(M;). So we may assume that M; is aspherical.

Suppose first that M; is Seifert-fibered. If M; is the 3-torus, then we may
take H; = m(M;) = Z xZ x Z, with Out(m(M;)) = GL(3,Z) of finite virtual
cohomological dimension by a theorem of A. Borel and J.-P. Serre [5]. Otherwise,
M; admits a finite covering by a circle bundle J\Z over a closed orientable 2-manifold
F; of genus at least 1. Take H; = m1(M;). Since M; is a circle bundle but not the
3-torus, there is a central extension

1—>Z—>7r1(]\7[/i)—>7r1(Fi)—>1,

so H;/Z(H;) = m1(F;) is torsion-free. Since M; is Haken, we have Out(H;)
#H(M;) by F. Waldhausen’s result [32], and #(M;) has finite virtual cohomological
dimension [25].

The remaining case is when M; is aspherical and not Seifert-fibered. We take
H; = m(M;), which is torsion-free, centerless, and has finite virtual cohomological
dimension. If M; is Haken, then again Out(m;(M;)) has finite virtual cohomological
dimension by [25], and if M; is non-Haken, then Out(7;(M;)) is finite by the Finite
Mapping Class Group Theorem. O

Now we consider the case when M may have nonempty boundary. Under some
hypotheses, we can prove the weakest form of Conjecture G(iii):

THEOREM 5.2. Let M be a compact orientable 3-manifold with no 2-sphere
boundary components and incompressible boundary. Assume that each irreducible
summand M; of M has the property that H(M;) — Out(M;) has image of finite
index. Then H(M)/ R(M) is virtually torsion-free.
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It is known exactly which irreducible M; have the property that H(M;) —
Out(M;) has image of finite index. By Waldhausen’s theorem [32] in the Haken
case and the Finite Mapping Class Group Theorem in the non-Haken case, all closed
irreducible M; satisfy this. When M; has nonempty incompressible boundary, the
condition is that the Seifert-fibered components of the characteristic submanifold
that meet OM; must be rather small; exact conditions are given in Main Topo-
logical Theorem 1 (absolute case) in Canary and McCullough [6]. When M; has
compressible boundary, M; must be a compression body or else be one of some very
simple types given in the Main Topological Theorem 2 (absolute case) of Canary
and McCullough [6].

PROOF OF THEOREM 5.2. It suffices to prove that Hi(M)/R(M) is virtu-
ally torsion-free. Since M has no essential compressing disks, Theorem 4.1 shows
that R(M) is the kernel of H (M) — Out(m(M)), so it suffices to show that
Out(m (M)) is virtually torsion-free. As in Theorem 5.1, we will apply the theorem
of Guirardel and Levitt, with G; = 71 (M;), although we will only need to verify
the torsion-free hypotheses. As in the proof of that theorem, the hypotheses are
satisfied when M; is closed, so it remains to verify them when M; has nonempty
boundary.

If M; is Seifert-fibered, then it has a finite covering ]\AjZ — M;, where now ]\A/EE a
product F; x S' with F; an aspherical orientable surface, and we take H; = m; (M;),
which is torsion-free. .

Suppose first that F; is an annulus. Then 71 (M;) = Z X Z so H;/Z(H;) is
trivial and Out(H;) = GL(2,Z) is virtually free.

If F; is not an annulus, then H;/Z(H;) = 71 (F;) is free of rank at least 2, hence
torsion-free. For Out(H;), we regard H; as a direct product F' x Z where F is free
of rank at least 2. The Z-factor is characteristic, and fixed by an index-2 subgroup
of Out(F x Z). There is a surjection from this subgroup to Out(F), and Out(F) is
virtually torsion-free by work of M. Culler and K. Vogtmann [7]. Since the kernel
Hom(F,Z) = H'(F) of this surjection is torsion-free, Out(F x Z) is also virtually
torsion-free. |

6. Beyond Conjecture B

In this section, as throughout, we assume that M is orientable. In this case,
D-o(M) is the subgroup of H(M) generated by twists about disks and rotations
about 2-sphere. For orientable M, we can analyze the group D~o(M) in more
depth; in particular, we will show that Dso(M)/ R(M) is torsion-free. This gives
Theorem 6.3 below, a companion result to Theorem 4.1.

First we will need a result about the twist group T (M), which is the sub-
group of H(M) generated by twist homeomorphisms. The statement involves the
characteristic compression body. In an irreducible orientable 3-manifold each com-
pressible boundary component has a closed neighborhood which is a compression
body (with incompressible frontier), and the neighborhood is unique up to isotopy.
Details are given in [27], and for a more general context in [6, Chapter 3]. In a
reducible 3-manifold, the compression body neighborhood may no longer be unique
up to isotopy, but it does have incompressible frontier (possibly having 2-sphere
components), which is the only property needed in the next theorem.
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THEOREM 6.1. Let M be orientable with nonempty compressible boundary,
and let Vi,... Vi be disjoint characteristic compression body neighborhoods of the
compressible boundary components Fy,..., Fy of M. Then Dso(M) = T(M) =

R(M) x (ngigk T(Vi)-

Proor. Fix a connected-sum decomposition M = M;# ---# M, along a col-
lection of disjoint imbedded 2-spheres Sj, such that each Mj; is prime. Enlarge the
collection of Sy to include an S2-fiber from each S? x S! summand of M. We may
assume that each V; lies in some M;. As in Proposition 3.1.3(b) of [22], R(M) is
generated by rotation homeomorphisms about the Sy.

From Proposition 3.1.3 of [22], R(M) is a central normal subgroup of H(M).
Moreover it is contained in 7 (M), and consequently D~o(M) = T (M).

Let D be any (essential) compressing disk in M, with D C 9V for some
V € {V;}. Write tp for a Dehn twist about D. Let G be the frontier of V. We may
assume that D is transverse to G, and let ¥ C G be a disk bounding an innermost
intersection circle. Surgery along E produces a disk D’ and a 2-sphere S disjoint
from D', and tp is isotopic to the composition of tp/ and a rotation about S. Since
D’ has fewer intersections with G' than did D, we may repeat this process until we
produce a disk Dy C V such that ¢p is isotopic to the composition of tp, with an
element of R(M).

There is a natural homomorphism from 7 (V;) to 7(M). Using these together
with the inclusion of R(M) into H(M) defines a homomorphism

o: R(M) x ([ T(V) = T() .
1<i<k
The previous paragraph shows that ® is surjective. Suppose that p is an element
of the kernel. Then the restriction of ®(p) to OM is isotopic to the identity. By
Proposition 2.11(b) of [22], the restriction of T(V;) to H(F;) is injective, so the
T (V;)-coordinates of p are trivial. Therefore p lies in R(M), but the inclusion of
R(M) — T(M) — H(M) is injective by definition, so p is trivial. Therefore ® is
an isomorphism. (I

THEOREM 6.2. If M is orientable, then D~o(M)/ R(M) is torsion-free.

Proor. If OM is incompressible, then D~o(M) = R(M), so assume that
OM is compressible, and choose Vi,..., Vi as in Theorem 6.1. By that result,
Dso(M)/R(M) = [[,<;< T(Vi), so it suffices to show that each 7(V;) is torsion-
free.

If V; N OM is a torus, then V; is a solid torus and 7(V;) is infinite cyclic.
Assume, then, that V; N 9M has genus at least 2. Elements of 7(V;) lie in the
subgroup of elements of H(V;) that are homotopic to the identity (in fact, 7(V;)
equals this subgroup, but we do not need that fact). The results B. Maskit in
[21] (in particular, Corollary 7), when translated into our 3-manifold language, say
that this subgroup acts freely on a Teichmiiller space, and consequently it must be
torsion-free. O

THEOREM 6.3. Let M be compact and orientable, with no 2-sphere boundary
components. Then the kernel of

O: Ho(M)/R(M) — Out(my (M))

1s torsion-free.
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ProoOF. By Theorem 4.1, Dso(M) is the kernel of H (M) — Out(m (M)),
so D>o(M)/R(M) is the kernel of Hy(M)/R(M) — Out(m(M)). If OM is
incompressible, then D~o(M)/R(M) is trivial, and if OM is compressible then
Theorem 6.2 shows that it is torsion-free. O

Finally, we remark that in almost all cases, the kernel of H(M)/R(M) —
Out(m1(M)) equals the kernel of H(M)/R(M) — Out(m1(M)). Theorem 4.3.4,
adapted to the orientable case and the post-Perelman age, gives the exceptions:

THEOREM 6.4. Let M be a compact orientable 3-manifold. Then M admits an
orientation-reversing homeomorphism that induces the identity outer automorphism
on w1 (M) if and only if either M is S3 or every prime summand of M is one of
52 x S, an I-bundle, or RP?.

For the exceptional manifolds described in Theorem 6.4, (M) does have an orien-
tation-reversing element of order 2, so the kernel of H(M)/R(M) — Out(m(M))
is not torsion-free.

References

[1] Riccardo Benedetti and Carlo Petronio, Lectures on hyperbolic geometry, Universitext,
Springer-Verlag, Berlin, 1992. MR1219310 (94e:57015)

[2] Michel Boileau and Jean-Pierre Otal, Groupe des difféotopies de certaines variétés de Seifert,
C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), no. 1, 19-22 (French, with English summary).
MR849619 (87g:57022)

[3] Michel Boileau and Jean-Pierre Otal, Scindements de Heegaard et groupe des homéotopies des
petites variétés de Seifert, Invent. Math. 106 (1991), no. 1, 85-107, DOI 10.1007/BF01243906
(French). MR1123375 (92i:57014)

[4] Francis Bonahon, Difféotopies des espaces lenticulaires, Topology 22 (1983), no. 3, 305-314,
DOI 10.1016,/0040-9383(83)90016-2 (French). MR710104 (85d:57008)

[5] A. Borel and J.-P. Serre, Corners and arithmetic groups, Comment. Math. Helv. 48 (1973),
436-491. Avec un appendice: Arrondissement des variétés a coins, par A. Douady et L.
Hérault. MR0387495 (52 #8337)

[6] Richard D. Canary and Darryl McCullough, Homotopy equivalences of $-manifolds and de-
formation theory of Kleinian groups, Mem. Amer. Math. Soc. 172 (2004), no. 812, xii+218.
MR2096234 (2005j:57027)

[7] Marc Culler and Karen Vogtmann, Moduli of graphs and automorphisms of free groups,
Invent. Math. 84 (1986), no. 1, 91-119, DOI 10.1007/BF01388734. MR830040 (87£:20048)

[8] David Gabai, On the geometric and topological rigidity of hyperbolic 3-manifolds, Bull.
Amer. Math. Soc. (N.S.) 31 (1994), no. 2, 228-232, DOI 10.1090/50273-0979-1994-00523-
3. MR1261238 (95a:57019)

[9] David Gabai, On the geometric and topological rigidity of hyperbolic 3-manifolds, J. Amer.
Math. Soc. 10 (1997), no. 1, 37-74, DOI 10.1090/S0894-0347-97-00206-3. MR1354958
(97h:57028)

[10] David Gabai, G. Robert Meyerhoff, and Nathaniel Thurston, Homotopy hyperbolic 3-

manifolds are hyperbolic, Ann. of Math. (2) 157 (2003), no. 2, 335431, DOI 10.4007/an-

nals.2003.157.335. MR1973051 (2004d:57020)

Patricia J. M. Grasse, Finite presentation of mapping class groups of certain three-manifolds,

Topology Appl. 32 (1989), no. 3, 295-305, DOI 10.1016/0166-8641(89)90036-9. MR1007108

(90h:57018)

[12] John L. Harer, The wvirtual cohomological dimension of the mapping class group of an
orientable surface, Invent. Math. 84 (1986), no. 1, 157-176, DOI 10.1007/BF01388737.
MR®&30043 (87¢:32030)

[13] John L. Harer, The cohomology of the moduli space of curves, Theory of moduli (Montecatini
Terme, 1985), Lecture Notes in Math., vol. 1337, Springer, Berlin, 1988, pp. 138-221, DOI
10.1007/BFb0082808. MR963064 (90a:32026)

[11



14]

[15]

[16]

(17)

(18]
[19]
[20]
(21]
22]
(23]

[24]

[25]
[26]

[27

[28]
[29]
[30]

(31]

(32]

(33]

MAPPING CLASS GROUPS 63

W. J. Harvey, Geometric structure of surface mapping class groups, Homological group theory
(Proc. Sympos., Durham, 1977), London Math. Soc. Lecture Note Ser., vol. 36, Cambridge
Univ. Press, Cambridge, 1979, pp. 255-269. MR564431 (82h:57012)

W. J. Harvey, Boundary structure of the modular group, Stony Brook Conference (State
Univ. New York, Stony Brook, N.Y., 1978), Ann. of Math. Stud., vol. 97, Princeton Univ.
Press, Princeton, N.J., 1981, pp. 245-251. MR624817 (83d:32022)

Allen Hatcher and Darryl McCullough, Finite presentation of 3-manifold mapping class
groups, Groups of self-equivalences and related topics (Montreal, PQ, 1988), Lecture Notes in
Math., vol. 1425, Springer, Berlin, 1990, pp. 48-57, DOI 10.1007/BFb0083830. MR1070575
(91g:57013)

Rob Kirby, Problems in low-dimensional topology, Geometric topology (Athens, GA, 1993),
AMS/IP Stud. Adv. Math., vol. 2, Amer. Math. Soc., Providence, RI, 1997, pp. 35-473.
MR1470751

Sadayoshi Kojima, Isometry transformations of hyperbolic 3-manifolds, Topology Appl. 29
(1988), no. 3, 297-307, DOI 10.1016/0166-8641(88)90027-2. MR953960 (90c:57033)

Vincent Guirardel and Gilbert Levitt, The outer space of a free product, Proc. Lond. Math.
Soc. (3) 94 (2007), no. 3, 695-714, DOI 10.1112/plms/pdl026. MR2325317 (2008c:20047)
Klaus Johannson, Homotopy equivalences of 3-manifolds with boundaries, Lecture Notes in
Mathematics, vol. 761, Springer, Berlin, 1979. MR551744 (82¢:57005)

Bernard Maskit, Self-maps on Kleinian groups, Amer. J. Math. 93 (1971), 840-856.
MR0291453 (45 #544)

Darryl McCullough, Twist groups of compact 3-manifolds, Topology 24 (1985), no. 4, 461—
474, DOI 10.1016,/0040-9383(85)90015-1. MR816525 (87a:57019)

Darryl McCullough, Mappings of reducible 3-manifolds, Geometric and algebraic topology,
Banach Center Publ., vol. 18, PWN, Warsaw, 1986, pp. 61-76. MR925856 (89{:57021)
Darryl McCullough, Topological and algebraic automorphisms of 3-manifolds, Groups of self-
equivalences and related topics (Montreal, PQ, 1988), Lecture Notes in Math., vol. 1425,
Springer, Berlin, 1990, pp. 102-113, DOI 10.1007/BFb0083835. MR1070580 (91k:57018)
Darryl McCullough, Virtually geometrically finite mapping class groups of 3-manifolds, J.
Differential Geom. 33 (1991), no. 1, 1-65. MR1085134 (92c:57001)

Darryl McCullough, Isometries of elliptic 3-manifolds, J. London Math. Soc. (2) 65 (2002),
no. 1, 167-182, DOI 10.1112/S0024610701002782. MR1875143 (2002j:57030)

Darryl McCullough and Andy Miller, Homeomorphisms of 3-manifolds with compressible
boundary, Mem. Amer. Math. Soc. 61 (1986), no. 344, xii+100. MR840832 (87i:57013)

D. McCullough and T. Soma, The Smale conjecture for Seifert fibered spaces with hyperbolic
base orbifold, J. Diff. Geom. 93 (2013), 327-353.

Steven Plotnick, Homotopy equivalences and free modules, Topology 21 (1982), no. 1, 91-99,
DOI 10.1016/0040-9383(82)90044-1. MR630883 (83a:55013)

Peter Scott, There are no fake Seifert fibre spaces with infinite w1, Ann. of Math. (2) 117
(1983), no. 1, 35-70, DOI 10.2307/2006970. MR683801 (84c:57008)

Teruhiko Soma, Scott’s rigidity theorem for Seifert fibered spaces; revisited, Trans. Amer.
Math. Soc. 358 (2006), no. 9, 4057-4070 (electronic), DOI 10.1090/S0002-9947-05-03804-3.
MR2219010 (2008b:57019)

Friedhelm Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math.
(2) 87 (1968), 56-88. MR0224099 (36 #7146)

Friedhelm Waldhausen, Recent results on sufficiently large 3-manifolds, Algebraic and geo-
metric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part
2, Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 21-38.
MR520520 (80e:57010)

DEPARTMENT OF MATHEMATICS, KOREA UNIVERSITY, SEOUL 136-713, KOREA
E-mail address: shong@korea.ac.kr

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OKLAHOMA, NORMAN, OKLAHOMA 73019
E-mail address: dmccullough@math.ou.edu
URL: www.math.ou.edu/~dmccullough/



	Preface
	The Hyamfest
	Courses at the Hyamfest
	Talks at the Hyamfest
	“What is…?” talks
	Software demonstrations
	Research talks

	Biographical Sketch of Hyam Rubinstein
	What is an Almost Normal Surface?
	1. Normal Surfaces and Algorithms
	2. What is an almost normal surface?
	3. Recognizing the 3-sphere
	4. Conclusion
	References

	The Ergodic Theory of Hyperbolic Groups
	1. Introduction
	2. Hyperbolic groups
	3. Combings
	4. Random walks
	Acknowledgments
	References

	Mapping Class Groups of 3-Manifolds, Then and Now
	Introduction
	1. The conjectures
	2. Additional remarks and examples for the Conjectures
	3. The Finite Mapping Class Group Theorem
	4. Conjectures A through F
	5. Conjecture G
	6. Beyond Conjecture B
	References

	Stacks of Hyperbolic Spaces and Ends of 3-Manifolds
	1. Introduction and basic notions
	2. Stacks and the Cannon-Thurston map
	3. Laminations
	4. Teichmüller space and the Ending Lamination Theorem
	References

	Harmonic Maps and Integrable Systems
	1. Introduction
	2. Harmonic maps of surfaces into Lie groups
	3. Harmonic tori in 𝑆³: spectral curve data and periodicity
	4. Spectral curves and their applications
	References

	Some of Hyam’s Favourite Problems
	1. Geometric topology in dimension 3
	2. Geometric topology in higher dimensions
	3. Miscellaneous
	References

	Almost Normal Surfaces with Boundary
	1. Introduction
	2. Compressing Disks and Disk Complexes
	3. The 1-skeleton: [𝒞(ℋ)] and [𝒞ℬ(ℋ)] disconnected implies [𝒞ℰ(ℋ,𝒯¹)] is disconnected
	4. The 2-skeleton: [𝒞ℰ(ℋ,𝒯¹)] disconnected implies [𝒞ℰ(ℋ,𝒯²)] is disconnected.
	5. The 3-skeleton: [𝒞ℰ(ℋ,𝒯²)] disconnected implies ℋ is almost normal
	References

	Computational Topology with Regina: Algorithms, Heuristics and Implementations
	1. Introduction
	2. Simplifying triangulations
	3. Normal and almost normal surfaces
	4. Combinatorial recognition
	5. Angle structures
	6. Experimentation
	7. The future of Regina
	References

	Left-Orderability and Exceptional Dehn Surgery on Two-Bridge Knots
	1. Introduction
	2. Fundamental group
	3. Left-orderings
	4. Proof of Theorem 1.1
	References

	Networking Seifert Surgeries on Knots IV: Seiferters and Branched Coverings
	1. Introduction
	2. Tangles, branched coverings and Seifert surgeries
	3. Seiferters, annular pairs of seiferters and tangles
	4. Seifert surgeries on covering knots
	4.1. The first family of Seifert surgeries \bm{ℰℳℐ}
	4.2. The second family of Seifert surgeries \bm{ℰℳℐℐ}
	4.3. The third family of Seifert surgeries \bm{ℰℳℐℐℐ}

	References

	Commensurability of Knots and 𝐿²–Invariants
	1. Introduction
	2. 𝐿²–invariants
	3. Proof of the main results
	4. Other 𝐿²–invariants
	5. Examples
	References

	The Groups of Fibred 2-Knots
	1. Some notation and terminology
	2. Knot groups with free commutator subgroup
	3. Fibred 2-knots
	4. High dimensional fibred knots
	5. Cohomological dimension
	6. Finitely generated normal subgroups
	7. Some open questions
	References

	On the Number of Hyperbolic 3-Manifolds of a Given Volume
	1. Introduction
	2. Hyperbolic Dehn fillings determined by their volumes
	3. Dehn filling on the figure eight knot complement and its sister
	4. Dehn filling on the Whitehead link complement and its sister
	5. Higher order terms in the Neumann-Zagier asymptotic formula
	6. Hyperbolic graphs with parabolic meridians
	7. Associated circle packings and cusp moduli
	8. Construction of different manifolds sharing the same volume
	9. Some Open Questions
	References

	Seifert Fibered Surgery and Rasmussen Invariant
	1. Introduction
	2. Criteria
	3. Proof of Theorem 1.1
	References

	Existence of Spherical Angle Structures on 3-Manifolds
	1. Introduction
	2. Proof of Theorem 1.1
	References

	3-Manifolds with Heegaard Splittings of Distance Two
	1. Splittings of distance two
	2. Examples
	3. Core circles
	4. Thanks
	References

	Generating the Genus 𝑔+1 Goeritz Group of a Genus 𝑔 Handlebody
	1. Introduction
	2. Embedding an unknotted arc in a ball
	3. Unknotted arcs in a handlebody
	4. Connection to width
	5. Connection to the Goeritz group
	Appendix A. Moving a diffeomorphism to preserve 𝐻₂.
	References


